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This paper presents a novel reduced-basis method for analyzing problems of linear elasticity in a system-
atical, rapid and reliable fashion for solutions with both upper and lower bounds to the exact solution in
the form of energy norm or compliance output. The lower bound of the solution output is obtained form
the well-known reduced-basis method based on the Galerkin projection used in the finite element
method, which is termed as GP_RBM. For the upper bound, a new reduced-basis approach is developed
by the combination of the reduced-basis method and a smoothed Galerkin projection used in the linearly
conforming point interpolation method, and it is thus termed as SGP_RBM. To examine the present
SGP_RBM, we first conduct a theoretical study on the very important upper bound property. Reduced-
basis models for both GP_RBM and SGP_RBM are constructed with the aid of an asymptotic error estima-
tion and greedy adaptive procedure. The GP_RBM and the newly proposed SGP_RBM are applied to ana-
lyze a cantilever beam with an oblique crack to verify the proposed RBM technique in terms of accuracy,
convergence, bound properties and computational savings. Both theoretical analysis and numerical
results have demonstrated that the present method is a very efficient method for real-time solutions pro-
viding exact output bounds.
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1. Introduction

In the design of engineering systems, important quantities (out-
puts) of interest are usually (i) displacement and stress fields in
solids, (ii) flowrates, lift and drag forces in fluids, (iii) temperature
and heat flux in thermal systems, etc. These outputs can be com-
puted numerically by solving the PDEs governing the physics of
the system. An efficient computational method is thus crucial to
solve the PDEs for the desired outputs.

Inventions of the finite element method (FEM) [1-6], the finite
difference method (FDM) [6,7], the boundary element method [7]
and meshfree methods [8-10] are very important advances in
computational methods, and many complicated engineering prob-
lems can now be solved routinely. The FEM is the most widely used
numerical approach because of the availability of many commer-
cial FEM softwares. A fully compatible FEM model can provide low-
er bound solutions to the exact solution in energy norm or in the
form of compliance output for elasticity problems. Meshfree meth-
ods have also been developed in recent years. An overview of the
meshfree methods and their applications can be found in [8,9].
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However, all these numerical methods require a large amount of
computing time even for engineering problems of normal-scale.
The situation becomes much more critical when one needs to ex-
plore intensively in the design space for an optimal design or for
inverse analyses of parameter identification [11]. Therefore, reduc-
ing computation time is of great importance in the field of numer-
ical simulation for practical engineering applications.

A fast computation method called reduced-basis method [11-
13] was proposed with error estimations to solve rapidly engineer-
ing systems. Prud’homme et al. [12] introduced the reduced-basis
method with a rigorous reduced-basis error bound and an asymp-
totic error bound. The study has shown the efficiency and robust-
ness of reduced-basis method for both compliance and non-
compliance outputs. It is observed that the error bound given in
these works is actually the error bound for the RBM output with
respect to the output of a very fine FEM model. It is not an error
bound to the exact output of the original problem, because the
FEM model surely contains errors. This type of error is thus termed
as the reduced-basis approximation error or the RBA-error in this
paper for the convenience of presentation. The RBA-error bound
is very useful and justified when the FEM model is sufficiently fine
and the FEM model error is negligibly small. Nguyen [14] has con-
structed RBA-error bounds based on an “inf-sup” condition for
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non-affine and non-linear PDEs. The RBM was also applied to solve
inverse problems in his study. In addition, Veroy and Patera [15]
presented the reduced-basis method with its rigorous RBA-error
bounds for parameterized steady incompressible Navier-Strokes
equations. Sen et al. [16] developed “natural norm” of RBA-error
estimation for coercive and non-coercive linear elliptic partial dif-
ferential equations. A stability analysis, for the application of re-
duced-basis methods to Navier-Stokes equations, based on an
“inf-sup” bound condition has been reported by Rozza and Veroy
[17]. In addition, applications of the RBM for the Boltzmann equa-
tion and stress intensity factor can also be found in [18,19]. All
these RBM models use the Galerkin projection and hence are
termed as GP_RBM models. Note that the solution bounds in the
GP_RBM models are in RBA-errors and very expensive to obtain.

In the recent development in the area of meshfree methods, the
linearly conforming point interpolation method (LC-PIM) [20-22]
has been formulated using the smoothing operation [23] and PIM
[9,10] shape functions. It was found that the LC-PIM has a very
important upper bound property in strain energy norm for elastic-
ity problems with homogeneous displacement boundary condi-
tions. This discovery has led to the development of a general
procedure to obtain lower and upper bounds to the exact output
based on the FEM and the LC-PIM [22] using the same mesh. Based
on the idea of the LC-PIM, this paper presents a novel SGP_RBM
method that is a reduced-basis method based on the smoothed
Galerkin projection. The SGP_RBM permits fast online computation
of outputs of interest for linear elasticity problems and provides
upper bounds to the exact solution output. The lower bound solu-
tion can be produced by the original GP_RBM approach [17]. There-
fore, although the exact output for a problem is generally
impossible to obtain, we know that it is within the upper and lower
bounds using the present fast computation procedure using both
GP_RBM and the newly developed SGP_RBM.

This paper is organized as follows. We first brief the important
properties of the FEM, the well-known reduced-basis method
(RBM), and the LC-PIM method. We next present the formulation
for our newly developed SGP_RBM based on the smoothed bilinear
form and the smoothed Galerkin projection used in the LC-PIM. We
then theoretically prove the upper bound property of our SGP_RBM
model. Finally, we implement our SGP_RBM and GP_RBM methods
for real-time computation of 2D elasticity problems.

2. Galerkin projection
2.1. Weak formulation

We consider a 2D linear elasticity problem with a physical do-
main of Q € R?, and associated functional space of

S={veH(Q)*|v;=0 onlp} (1)

where H'(Q) is a Hilbert space, v € S is a trial function, and I'p, is
the boundary on which Dirichilet boundary condition is satisfied.
We then introduce the weakform of linear elasticity problem

ov; ouy,
— | Cju—=—)dQ = tdlr 0;dQ 2
/an,» (cyk, ax’)d /FN vitid +/gb,u,d @)
a(u,v) f(v)
where u; (i = 1,2) is the displacement component in the x;-directions

at a point in , Gy is elasticity tensor of material stiffness constants
that are symmetrical: Gy = Gjii = Gijik = Cuiij, I'n is the boundary on
which Neumann boundary condition is satisfied, t; are the specified
boundary stress and b; are external body force.

The exact solution of the displacement u¢ € S satisfies

a(u®,v) =f(v) Yoves. (3)

We now define the parameter domain, 2 € R’. A parameter
1 € 7 is generally an “input” to the problem which may represent
the geometry, material properties and/or variety of boundary con-
ditions. Our design problem is now defined as: for a given param-
eter i € 2, the exact output of a given problem can be found by

(W) = et (p); ), (4)

where ¢ is a u-parameterized linear functional, and u¢(u) € S is the
exact solution which satisfies

a(ue (), v; 1) =f(v; ) Yo €S, (5)
where a(u®(u),v;u) and flv;u) are the u-parameterized bilinear and
linear functional, respectively. It shows clearly that evaluating an
“output” s(u) for a given “input” i € 2 requests solving the under-
lying equations as given in Eqgs. (4) and (5).

We next define parametric affine mapping which separates typ-
ical bilinear form of a(w,v; i) to parameter-independent parts and
parameter-dependent parts:

a(w,v; 1) = Z@q a9 (w, ), (6)

where 1< g<Q, ©%u) is an affine function of u <€ 2 c R, and
a%(w,) is u-independent bilinear form. Similarly, the typical linear
functional can also be defined as

Z " (1f* (v 7)

where 1 < gr< Q, ©% (p) is an affine functional of u € 2 c R, and
f%(v) is p-independent linear functional. The parametric affine
mapping is crucial for formulating the affine parameter decomposi-
tion [12] which is very important and useful in reduced-basis
approximation.

2.2. Finite element approximation

In practice, it is generally very difficult to solve the governing
equations either in strong or weakform in analytical means for
the exact solution. We then often implement a numerical method
to obtain an approximate solution. The most popular method is
the traditional finite element method where the standard Galerkin
projection is chosen to obtain the approximate solution u. It is well
known that such a FEM solution is the best (in energy norm) pos-
sible solution in discrete finite element space S [24], and that
it —» uwhen S — S, meaning that the FE approximate solution will
approach to the exact solution when the size of element ap-
proaches to zero and the dimension of the FEM model X — cc. In
practice, it is not possible to use a FEM model with infinite dimen-
sion. However, we can use FEM models of very large dimension X,
so that the FEM solution is sufficiently close to the exact solution to
meet the design purposes.

For u € 2 C RP, the finite element solution i satisfies

a(@(p), v; 1) = f(v; )

For effective discussion, u(u) is expressed in terms of the fol-
lowing interpretation:

W e S. (8)

N
() = Ui (9)

where i; (1) is a nodal displacement at node x;, and ¢, € S is a nodal
basis (or shape) function constructed based on elements which has
delta function property: ¢;(x;) = dj.

We then substitute Eq. (9) into Eq. (8), and set ¢;,i = 1,...,, as
the trial function v, we have the following discrete set of N
equations.
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Za(p_]7(pl7 ) f((pxnu) i=1,....% (10)
j=1

or in matrix form

K(wu(w) = F(u). (11)

Here, K is the FEM stiffness matrix with entries of

Kij(w) = a(e;, @i 1) Z@q )a'(¢;, ;) (12)
or
Q .
K(u) = 6'(wK", (13)
q=1

where Kg =a'(@;, @;), 1 <i,j <N, a(y) is the vector of nodal dis-

placements u;(u), and
Q ~
= Z O (u)FY, (14)
is the vector with entries of

Fi(p) = f(y; Z@"f (Wf (¢ (15)

The corresponding output is defined by
S=(u(w) or §=u"(pL(y), (16)

where ¢ = f in functional form or L = F in matrix form as the com-
pliance output is considered in our work.

The useful and important properties of FEM [4,5,22,25] are
briefly as follows.

Remark 2.1. Lower Bound Property: The strain energy based on the
compatible FEM solution is no-larger than the exact strain energy.

a(ii, o) :/ FC2dQ < a(u,uf) = /aTCsdQ. (17)
Q JQ

In the above equation, the strain energy of the FEM system can also
be expressed as

a(i, it) = a'Ka, (18)
and 5—2—“ is the strains term related to the FEM displacement
UeSCS, e=% is the exact strain with respect to the exact dis-
placements u® e S The lower bound property implies the well-
known fact that the FEM solution underestimates the strain energy
due to the over-stiff behavior of the FEM model.

Remark 2.2. Monotonic property: For given a sequence of ny
nested finite element discretizations D1, D;, ..., Dn,, of the corre-
sponding solution space satisfies SD C Sp,---C Sp,, CS, and
the strain energy inequalities then stand

a(ﬂvﬂ)D1 < a(a7a)Dz <0< a(il?ﬂ)pnm < a(ue7ue)7 (19)

where a(u, o), is the FEM compatible strain energy obtained using
mesh D;, 1 <i< ny. This property can be shown easily using the
arguments give by Oliveira [2].

Remark 2.3. Reproducibility of FEM: If u® € S, then the FEM will
reproduce the exact solution. Discussion on this property can be
found in Liu [1] and Oliveira [2].

3. Reduced-basis method via Galerkin projection

In general, the computation time for an FEM evaluation is very
long due to the very large dimension of the solution space X, and

hence it is very expensive. The reduced-basis approximation was
thus developed for computational efficiency and drastic cost
reduction.

The standard RBM starts with the introduction of a sample set
in the parameter space that is usually very small, Py = {u' € 9,

., N € 7}, where € 2 c RP. The reduced-basis space is then
defined as Wy = span{¢' = (i), 1 < i < N}, where ii(u) is obtain-
able using the FEM for all given p.

The GP_RBM solution uy(u), for any u € 2, satisfies

a(iiy (1), v: ) = f(: ) Yo € Wy, (20)
where a(iiy (@), v; ) is the bilinear form with the properties of sym-
metry and coercivity [13]. The corresponding output interest can be
given by

Sn(p) = L(un (1)) (21)
3.1. Computational procedure

The GP_RBM solution in terms of displacement field can be
written in the form of

N . .
=D (W, (22)
=
. . 3T
where ¢ =:1d d ... gka is the N x 1 vector of all the nodal
displacements of the FEM solution obtained for the jth parameter;

i, (1) is the unknown reduced-basis coefficient representing the
rate of contributions of the bases towards the GP_RBM solution,
and is obtained by solving the following set of N equations:

N (Q
> {Z O (a'(d, } Z 0% (¥ (¢ (23.)
Jj=1 q=1
or in more detail
N Q ROR .
{Z 0% (1) (Z > da (g, (Pk)4k> }“]R(M)
j=1 Lg=1 =1 k=1
N Q R
=> > 67w (Z ¢ qf(%)) (23.b)
i=1 gp=1 k=1
wherei=1,...,N. Note that both a? and f% are computed offline and

very expensive, but need only to be done once. We further provide
the equations in matrix form in order to present the reduced-basis
procedure in mechanics community, and the matrix forms are very
helpful for the proofs in this study.

Eq. (23) can be written in the following matrix form:

Ky ()i (1) = Fy (i), (24)

where uy(u) is a reduced-basis coefficient vector with the entries of
uf(u). Following Eqs. (6) and (7), the reduced-basis stiffness matrix
and force vector are defined as

Q
Kn(w) = i O'(wKj and Fy(u) = Z’ O (WEY, (25)

where K¢ is a parameter-independent N x N matrix and F is a
parameter-independent N x 1 vector:

K{ =Z'K’Z (26)
and
F = Z"F9, (27)
where

=['=u(),1<i<N (28)
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with a dimension of ® x N, K7 is a X x R matrix with the entries of
a¥(pj, ¢i), and F% is a R x 1 vector with entries of f%(@;). In the
GP_RBM formulation, it should be noted that all the bases of Wy
must be linearly independent in order to obtain the well-condi-
tioned RBM algebraic equation. Hence the Gram-Schmidt orthogo-
nalization is employed to orthogonalize the bases of Wy, and thus
the matrix Z is made orthogonal [13].

The discrete form of output defined by Eq. (21) can be written as

Sn(1) = an () Ly () = () Fn (), (29)

where Ly = Fy for our compliance output.

From the above formulation, the procedure of GP_RBM can be
separated into “offline” and “online” computational stages
[12,13]. In the “offline” stage, N times of finite element analyses
based on the mesh of very large dimension X are required to eval-
uate, and thus very expensive. The matrices Z, K% and F;/ need to
be formed “offline” and stored. In the “online” computational
stage, Eq. (25) is necessary to form for an input parameter
U e c RP.Egs. (24) and (29) are then solved for the RB output.
Therefore, the online computation basically requires O(N?) opera-
tions to obtain the reduced-basis output of interest Sy(u) very effi-
ciently and virtually in real-time.

3.2. Properties of the Galerkin projection reduced-basis method

We now provide some important and useful properties of the
GP_RBM .

Remark 3.1. Lower bound property: The strain energy of the
GP_RBM solution is a lower bound to that of the full FEM solution
and also that of the exact solution:

a(ﬂN7 ﬂN) < a(ﬂv ﬂ) < a(ue7 ue)7 (30)
where ity € Wy,i1€ S, u* € Sand Wy ¢ S C S.

The proof is very simple and straightforward based on the sym-
metry and coercivity of a(,). As the GP_RBM uses the standard
Galerkin projection that is the same projection that one uses for
creating the standard FEM model, it produces a lower bound solu-
tion (in energy norm) to the FEM solution and hence to the exact
solution (see, Remark 2.1). The proof of this remark can be found
in [12,13].

Remark 3.2. Monotonic convergence property: For given a sequence
of ny, nested finite element discretizations Dq,Dj,...,Dy,, such
that the corresponding solution spaces satisfy Sp, C Sp, - C
S D, C S.The reduced-basis spaces based on the given sequence of
meshes can also anticipate that (WN) C SD1 (WN)D” C Spnm

where (WN)D is the reduced-basis space based on the mesh D;.

From Remark 2.2 and Remark 3.1, we then have the following
inequality:

a(tiy, ty)p, < £1(1~11\1~,7:11\1)DZ <o < a(leﬂN)D”m <aué,u’), (31)
where a(ily, iiy)p, are the strain potential energy of the GP_RBM
based on the FEM mesh D;.

4. Smoothed Galerkin weakform

To establish the theoretical framework of an upper bound re-
duced-basis method, a smoothed Galerkin weakform is introduced
based on a smoothed bilinear form. In the smoothed bilinear form,
the gradient of field variables is modified by using the strain
smoothing operation [23] which provides a softening effect to
the discretized model. The softening effect can leads to an upper
bound solution with respect to the FEM solution as well as the ex-
act solution. Therefore, numerical methods developed based on the

smoothed bilinear form are proven variationally consistent and can
possess a very important upper bound property. The smoothed
Galerkin weakform is very powerful for a new class of numerical
methods. Examples of numerical techniques based on the
smoothed Galerkin weakform are the stabilization technique for
nodal integrated meshfree methods where nodal-based smoothing
domains of Voronoi cells are used [23]; the smoothed finite ele-
ment method (SFEM) where element-based smoothing cells are
used [26,27]; the LC-PIM where nodal-based smoothing cells and
PIM shape functions are used for upper bound solutions [20,28];
the edge-smoothed finite element method where edge-based
smoothing domain and PIM shape functions are used [29].

4.1. Smoothed bilinear form

The problem domain € is divided into a set of N;, smoothing do-
mains/cells Q,, such that Q = UN" 195, as shown in Fig. 1. The inte-
gral representation of a functlon w € S is firstly introduced [9] as

whx) = [ wEOWE-&)de, (32)

n
where the superscript “IR” stands for integral representation, and
W € S is a pre-described smoothing function for the point at x in
the smoothing domain ,. It is required that (1) function w is at
least first order differentiable over the smoothing domain €, and
(2) the smoothing function W € S should have the properties of
positivity, decay and partition of unity: [, W(x—¢)d¢ =1, so that
at least the constant function at X can be exactly represented at the
limit of €2,, — 0. The simplest smoothing function is the local con-
stant smoothed function is defined as

Wix— &) = {1//\” ¢e

W)= 0 ¢a

(33)

where A, = [, dQis the area of , in which the point X is included.
Assuming that w € S is differentiable and the first derivatives of a
function w can be represented as

(o) - [, o (3 [, %57 4)

-3

(34)

IR
Eq. (34) suggests that ?W X)) is now a constant in €2, and then
using the well-known Green s'Theorem, the smoothed strain/gra-

dient of Eq. (34) becomes the line-integral form:

w;, 1
a—X]—A—n /pn Wl-njdl", (35)

Fig. 1. Division of problem domain €2 into smoothing domains €2,,.
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where I',, is the boundary of the smoothing domain ©, and n; is the
outward normal on I",,. Note that Eq. (35) is also well-known as the
distributional derivative of a function in the classical sense, and
when w is continuous, Eq. (35) is the exact expression for the
smoothed derivative. Liu has generalized Eq. (35) to cases when w
is discontinuous living in a G space [25]. In this work, however,
we confirm our discussion only in H spaces.

Using the smoothed gradient defined in Eq. (35), the smoothed
bilinear form can be written as

(W, ) = a”'cu,fwkdfz
Np 1 .
= Z — </ Uﬂ’lde) (Cijkl / W,m,dl"). (36)
o A \Jr, Jra

Here, we assume that Gy, is constant (not a function of
coordinate).

4.2. Linearly conforming point interpolation method

As in the FEM, the LC-PIM physical domain € is first meshed
with N, elements of, say, triangles with total of N, nodes because
the triangular mesh can be created automatically for complicated
problem domains. In the LC-PIM, these triangular cells/elements
are then divided into N, smoothing domains Q = U*, Q,, and each
Q, contains a node and covers portions of elements sharing the
node, as shown in Fig. 2. For any u e 2 c R, the LC-PIM seeks
the solution that satisfies the smoothed Galerkin weakform:

ap (), v; f) = f(v; )

where displacement field u(u) € S is expressed in terms of the fol-
lowing interpretation

N
=S e 38)
i=1

where 1i;(11) is a nodal displacement, and ¢, € S is a nodal shape
function of the point interpolation method. In the point interpola-
tion method (PIM), shape functions are constructed using a set of
scattered nodes in a local support domain. The procedure of con-
structing PIM shape function, based on polynomial functions, is
very straightforward and generally the same as the traditional finite
element method but using nodes beyond the element. The detailed
procedure can be found in [9]. In this work, we use only three nodes
in constructing PIM shape functions ¢; which is the same as that of
the linear triangular element in the FEM.

We then substitute Eq. (38) into Eq. (37), and set ¢o;,i =1,..., N,
as the trial function v, we have the following discrete set of W
equations.

YeS, (37)

O Field node
A Centroid of triangle

< Mid-edge-point

Fig. 2. [llustration of background triangular mesh and the smoothing domain
created by sequentially connecting the centroids with the mid-edge-points of the
surrounding triangles of a node.

Z (pjv(va (,L() :f((pihu)7 1:17'N (39)
j=1

In the matrix form, it can also be written as

K(wua(w) = F(p), (40)

where K(u) is the smoothed stiffness matrix of LC-PIM with entries
of Ky(u) = a(e;, @i 1), 1 <1i,j <N, a(u) is the vector of nodal dis-
placements #;(u), and F(u) is the vector with entries of f{o;; 1),
which is the same as given in the FEM. Similar to the FEM, the
LC-PIM of Eq. (40) follows Egs. (11)-(15).

The corresponding output is defined by

S(u) = L(u(p)) = u" (WL(w), (41)

where L = F for our compliance case.
4.3. Properties of the linearly conforming point interpolation method

The properties of our smoothed bilinear form and the LC-PIM
are now listed here. The proofs of these properties can be found
in [22] based on energy principle, in [25] based on variational
statement for functions in H spaces, and in [30] for functions in G
spaces.

Remark 4.1. Reproducibility property: When the smoothing
domain @, — 0, the smoothing function W(x — &) becomes the
Delta functlon and the smoothing strain 3 ‘W' approaches to the exact
strain of 24X Thus, we shall have ap(w, v) — a(w,v).

Remark 4.2. The formulation of LC-PIM (see Eq. (36)) clearly indi-
cates that the smoothed bilinear form of LC-PIM is symmetric:
ap(w,v) = ap(v,w),Yw,v € S and positive definite: a(w,w) >0
YwesS,w#0.

Remark 4.3. Softening effects: For any u € S, we have the inequal-
ity: ap(u,u) < a(u,u), where ap(,) is the smoothed bilinear form
given in Eq. (36) and a(,) is the standard bilinear form given in

Eq. (2).

Remark 4.4. Forany u € S, the strain energy for a LC-PIM model is
no-larger than that of a FEM model: ap(u,u) < a(u,u), where
ap(u,u) = u'Ku and a(u, u) = u"Ku.

Remark 4.4 is a general consequence of Remark 4.3. It also indi-
cates that the FEM stiffness matrix K is “stiffer” than the LC-PIM
stiffness matrix K.

Remark 4.5. Upper bound of the FEM solution: The strain energy of
the smoothed Galerkin projection solution & is no-less than that of
the FEM solution i : a(i1,11) < dp(il, 1) where ap(u, 1) = t'Ka and
a(it, i) = u"Ka in matrix form.

Remark 4.6. Monotonic convergence property: The LC-PIM pos-
sesses the monotonic convergence property. For domain discreti-
zations: D; and D,, we have the inequality: ap, (w, w) < ap, (w,w),
where the domain division D, is created by dividing the problem
domain € into a set of smoothing domains: Q = U}",Q,, and the
division D, is created by sub-dividing the smoothing domains Q,,
of D, into sub-smoothing-domains: Q, = UZ’; Qna [25].

Proof. According to the smoothing domain divisions of D; and D,
described above, the contribution of Q, and that of sub-smooth-
ing-domains Q, = uj; 1@ng should be compared, and thus we
should have

aw, ds / aw,
dQ = dQ. 42
/-Q ax] ,1 JQnr aXJ ( )
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Using the above equation and the triangular inequality [25], we
have the following inequality:

1 ow; ' awk
L[ M0, / o )
Ay </Qn 0X;j > ﬂd( 0n OXi
o ow; aWk
= (Z /Qm dQ> ukl(Z /Qnr o )
1 & ow; " owy
<L Wig0)c, / Wi 40 43
a3\, Soeen( [, Seao)] )

Eq. (43) implies Remark 4.6.

In this work, we should note that the creation of smoothing do-
mains €y, in the LC-PIM, is based on the background cells/elements
as shown in Fig. 2. When the size of elements to approaching zero,
so does the smoothing domains €,, — 0. From Remark 4.1, it is
noted that if ©,, - 0, we have ap(w,v) — a(w,v). This shows that
the LC-PIM solution will approach to the exact solution and the
softening effect introduced by the smoothed Galerkin projection
is monotonically reduced, when the mesh is refined in a nested
manner. [

Remark 4.7. Existence of upper bound of the exact solution: For a
fixed division of smoothing domains D, there always exists a
sufficiently large critical dimension of the discretized space X,
such that when X > R, the strain energy of the smoothed Galerkin
solution u can be uniquely found and is no-less than that of the
exact solution u®: ap(u, 1) > a(ué, u).

Proof. We first examine

ap(u,u) — a(u’, u’) = [ap(u,u) — a(u, u)] - [a(u®, u®) — a(u, u)],

7 i (44)
where
dexc = a(u®,u®) —a(u,u) > 0 (45)

This is the gap between the exact solution and the Galerkin (FEM)
solution. From Remark 2.2, we know that Jgx_g is a non-negative
number that approaches to zero when the mesh is refined
(X — o). On the other hand, from Remark 4.5, we have

Asc-c = ap(u,u) — a(u,u) > 0. (46)
This is the gap between the smoothed Galerkin solution and the
Galerkin solution. It is a non-negative finite number of a fixed finite
smoothing domain division D for any given mesh division XN. The
gap Asq.c will never approach to zero regardless how big RN is, if a
smoothing domain division D is kept finite. This is because Asg.g
represents the smoothing effects depending only on how the
smoothing is operated. It approaches to zero only when the
smoothing domain €2, is refined. Therefore, Eq. (44) becomes

A SG-G - (;Efo (47)
~—— ~—~—

—0 when RN

ap(u,u) —a(u®,u®) =

>0 when N1 >0 and finite for any X

Therefore, there exist always an N that is sufficiently large, so that
ap(u1,u) = a(u®,u®). This proves Remark 4.7. O

Note Remark 4.7 is just to show the fact that we can always
make a smoothed Galerkin model as soft as desired. In fact, when
N increase too much in relation to a fixed finite smoothing domain
division D, the smoothed Galerkin model can even become singu-
lar, and u can not be able to obtained. Even in that case, Remark
4.7 can still hold, because # becomes infinite and so ap (i, i1). In

our past work so far, Remark 4.7 was confirmed using LC-PIM
[22]. Discussions on the minimum number of smoothing domains
in relations to the number of DOFs (or nodes) for a non-singular
smoothed Galerkin model can be found in [25,30].

5. A novel reduced-basis method

The main purpose of this study is to develop a novel RBM ap-
proach that produces an upper bound of the exact output for linear
elasticity solid mechanics problems. The idea is inspired from the
formulation of the linear conforming point interpolation method
(LC-PIM) [20,21]. The novel RBM model is built by the smoothed
Galerkin projection and thus termed as the smoothed Galerkin pro-
jection reduced-basis method (SGP_RBM).We now present the
computational procedure of SGP_RBM in both variational formula-
tion and matrix formulation.

In the SGP-RBM, the basic procedures are largely the same as
that of the GP_RBM presented earlier. The key difference is that
we use the smoothed bilinear form in the SGP_RBM. The SGP_RBM
starts with a sample set Py = {u! € 2,..., uN € 2} that is usually
very small, where pe 2 cRP, and the reduced-basis space
Wy = span{¢' = ii(u),1 <i< N}, as defined in Section 3. The
SGP_RBM solution for any u € & satisfies

ap(un (), v; 1) = f(v; )

where tiy(u) is the SGP_RBM solution. Following the GP_RBM com-
putational procedure as discussed in Section 3.1, the above equation
(48) can be written as

Yo € Wy, (48)

N Q &
) {Z e’ (waj (chC‘)}”J (W)=Y 0%"(wfrE), 1<i<N,
j=1 Lg=1 q=1
(49.a)
N Q RN . .
3 {Z o (u) ( D ba(@r w)CL) }WR(M)
j=1 Lg=1 I=1 k=1
N
=3 > o (Z i (@ ) (49.b)
i=1 q,:1

where @, ) is the smoothed bilinear form for component g, and i,
are the unknown SGP_RBM contribution rates to the bases of Wy.
The terms @) and f% are computed offline, but only once.

The matrix form of the discretized system equation can be ex-
pressed as

Ky(wun(p) = Fn (). (50)

~ In the above equation, iy (i) is a N x 1 vector with the entries of
i, (w); the stiffness matrix Ky of N x N is defined as

— Q f—

Ky (1) = (Z @"(u)l<§,>7 (51)
q=1

where KY = Z'K?Z with the matrix Z given in Eq. (28), and K9 is a

N x X smoothed stiffness matrix with the entries of a}(¢;, ¢;). The
force term is defined as

Qs
Ey(u) =) 0" (WFy, (52)
qr=1

where Fy' = Z'F¥ is the N x 1 reduced-basis force vector and F¥ is
the X x 1 force vector containing f% (¢;).
The SGP_RBM output can be written as

= () (). (53)
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Similar to the GP_RBM, the computational procedure of the
SGP_RBM can also be separated into the “offline” and “online”
computational stages. The “offline” and “online” computations
for both GP_ and SGP_RBM are listed in Table 1 for clear reference.

5.1. Properties of the novel reduced-basis method

Remark 5.1. Softening effect: For any admissible uy € Wy, the
strain potential energy for the SGP_RBM is no-larger than that for
the GP_RBM:

ap(un, un) < a(un, un), (54)
where

ap(uy, uy) = ul Kyuy = ul(Z'KZ)uy (55)
and

a(uy, uy) = ul Kyuy = u},(Z'KZ)uy, (56)

where dp(uy, uy) and a(uy,uy) are bilinear forms of the SGP_RBM
and the GP_RBM based on any admissible displacement field uy.

Remark 5.1 is the consequence of Remark 4.4 and can be said
loosely that Ky is softer than Ky.

Remark 5.2. Upper bound to the GP_RBM solution: The strain
energy of the SGP_RBM is an upper bound to that of the GP_RBM:
aD(ﬁN, le) = a(ﬂN, le)

Proof. From Egs. (20) and (48), we can have

ap (iiy, v) = a(ily, v), Yo € Wy. (57)
If we define v = 1y, we obtain
ﬁD(ﬂN, ilN) = a(ﬂN, le) (58)

Similarly, if we define v = tiy, we obtain
ﬁD(ﬂN,HN) == a(ﬂN,ﬂN). (59)
We next define the error iy — ily, and examine the following:

ap(liy — Un, Uy — Un) >0 = Ap(Un, Un) — 20p(Un, Un) + Gp(Un, Uy)

= aD(ﬂN, HN) — 2a(ﬂN, l]N) + aD(ﬂN, ﬂN)
(a(ty, tiy) — ap(ity, Un)) 0 + a(liy, ty) < dp(ily, Uy)

(60)

From the argument of Remark 5.1, we have (a(uy,tn)—
ap(iiy, ty)) = 0. Therefore, the above equation confirms this Remark
52. O

Remark 5.3. Monotonic convergence property: Based on the two
domain divisions: D; for a coarse mesh and D, for a fine mesh,
we have the following inequality:

ap, (i, Uy) > dp, (Un, Un), (61)
Table 1
Offline and online evaluations of GP_ and SGP_RBM
Stage GP_RBM SGP_RBM Dimension
Offline evaluation Z (both GP_ and SGP_RBM) Nx N

F% (both GP_ and SGP_RBM) Nx1

FY (both GP_ and SGP_RBM) Nx1

K¢, K¢ R x R
Online evaluation Fy(both GP_ and SGP_RBM) Nx1

Ky Ky N x N

uy iy Nx1

Sn SN Scalar value

where ap, (ly, tly) is the strain potential energy of SGP_RBM based
on the mesh D;.

Remark 5.3 is a consequence of Remark 4.6.

Remark 5.4. Upper bound of the FEM solution: For a fixed division of
smoothing domain D, there always exists a sufficiently large
critical dimension of the reduced-basis space N, such that when
N > N, the strain potential energy ap(uy,uy) of the SGP_RBM
solution is no-less than a(u, i) of the FEM solution: ap(iiy, ily) >
a(u, u).

Proof. From Remark 3.1, we have
4" = a(u,u) - a(ly, uy) > 0. (62)

Here, we note the fact that 4’ is a non-negative number that ap-
proaches to zero when the RBM space is refined (N — oo). On the
other hand, from Remark 5.2, we have

A" = ap(ﬂlw ﬂN) — a(ﬂN, ﬂN) > 0. (63)

Note, now the important fact that 4” is a non-negative finite num-
ber of a fixed finite smoothing domain division D for any given N.
The gap A” will never approach to zero regardless how big the N
is, if D is finite. It approaches to zero only when the smoothing do-
main D is refined. Using Eqgs. (62) and (63), we then obtain

ap(ity, ily) — a(it, i) = A" — A'. (64)

Now, we can observe a situation: for a fixed D, when N — oo, iy — 1

and A’ - 0 but 4” remains non-negative and finite:

A" - A . (65)
~~

~~

dD(ﬂN, ﬂN) — a(ﬂ, ﬂ) =
—
non-negative and finite for any N

— A" when N—oo —0 when N—oco

Therefore, we can always find an N that is sufficiently large, so that
ap(un,uy) = a(u,u). This proves Remark 5.4. O

Remark 5.5. Upper bound to the exact solution: For a fixed division
of smoothing domain D, there always exists sufficiently large num-
bers N. and ¥, such that when N > N, and R > X, the strain
energy of SGP_RBM solution is no-less than that of the exact solu-
tion: ap(tin, tiy) > a(u®,u®), if the smoothing operation is sufficient
in the model.

Remark 5.5 is the consequence of Remark 4.7 and Remark 5.4. It
will be confirmed later in our numerical study.

5.2. Output bound and the bound gap

We now examine the upper and lower bounds of the present
RBM to the exact output. From the properties of GP_RBM and
SGP_RBM (Remark 3.1 and Remark 5.5), we have our compliance
output bound:

Sn(H) < s°(u) < sw(p), (66)
where
gN = flLiEN = ﬁLRNﬁN = a(ﬂN,ﬂN) (67)

is the lower bound output of the GP_RBM model and similarly,
Sy = ﬁ—l,\-]FN = ﬁLRNﬁN = a(ﬂN, HN) (68)

is the upper bound output of the SGP_RBM model in the form of en-
ergy norm. Since the exact output bounds have been known, we
need only a model that is just fine enough for our practical design.
The use of unnecessarily fine model that are very expensive can be
avoided.

The output bound gap is determined by

Gp (1) = sn(p) = Sn(H), (69)
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where Gp(u) is the bound gap, and the subscript “D” stands for dis-
cretization. By comparing the bound gaps Gp, (¢) and Gp, (1), it is
possible to assert that the use of the fine mesh in the proposed re-
duced-basis method will have a tighter bound gap than that of the
coarse mesh: Gp, (i) > Gp,(u), based on the monotonic conver-
gence property of GP_ and SGP_RBM (Remark 3.2 and Remark
5.3). It is noted that the bound gap Gp(u) is employed for verifying
monotonic convergence property of the proposed reduced-basis
method.

6. Sample set construction

The creation of reduced-basis sample set follows that in refer-
ence [11]. The asymptotic error estimation and the greedy adaptive
procedure are the ingredients of the sample set construction.

6.1. Asymptotic error estimation

In the reduced-basis method, the “N” optimal sample set Py and
associated “N” RB space Wy need to be created. Thus, a simple
RBA-error estimation using the greedy adaptive procedure is em-
ployed to determine optimal “N”. In this work, the asymptotic error
estimate [11,12] is chosen as a RBA-error estimation. We first de-
fine an alternate “M” sample set in the parameter space, Py =
{W'ez,...,uM e 2} and the assoc1ated “doubled” reduced-basis
space becomes Wy = span{u(u'),. UM}, where M=2N. We
intentionally set Py C Py and consequently Wy C Wy it is possi-
ble to expect that the “M” reduced-basis solution iy (i) is very
close to u(u), um () — u(w) and thus Sy () — s(u) due to fast con-
vergence rate of the reduced-basis approximation [13]. The “M”
RBM solution output can thus be treated as the traditional FEM
solution output in the error estimation.

The asymptotic estimate error introduced by GP_ RBM is de-
fined as

A (1) =] Sm(l) = Sn(w) |, (70)
and the exact error is also presented as
A exact (1) =1 S(1) = Sn () |, (71)

to justify the reliability and accuracy of our asymptotic error esti-
mation. Based on the asymptotic error bound [11-13], the asymp-
totic error estimation has the desirable features of theoretical
simplicity, computationally efficiency, a very close-to-unity affec-
tivity, and thus it can be expected that Ay, (1) ~ 4} exae: (1) Besides,
the asymptotic error estimation works well for many types of out-
puts. Therefore, it is very suitable for the creation of our reduced-
basis sample set.

The averaged asymptotic and exact errors defined below are
used to examine the performance of our procedures in a predefined
random parameter set Siest C 2.

Z"lest AS ,U )

A3 test and

NM.

avg ntest
Ntest 4S i

As Z 5 AN exact (lutest) 72

N.exact,avg — n ) ( )

test

where :utest € SteSt' ANM(Mtest) and 4}
Egs. (70) and (71), respectively.

(Ui.,) are evaluated using

N.exact

6.2. Greedy adaptive procedure

In the greedy algorithm, a sample space S° is necessarily created
in a regular grld pattern over the entire parameter domain 2. Sam-
pling points p' € Py are chosen in SG C Z to create an optimal re-
duced-basis sample set Py={y;1 <i< N} here. At the ith greedy
step, a sample point y' € Py is chosen at which the maximum

asymptotic error point 43 (., is found. At a certain “N” greedy
step, it is found that the maximum asymptotic error
A (W) < el Where g is the predefined output error toler-
ance, and the greedy algorithm will stop. The optimal sample set
construction is completed.

Note that creating reduced-basis sample set Py is only based on
the GP_RBM model as (i) the bases of RB spaces: Wy and W, are
spanned by the FEM approximations, (ii) the exact error
A exace (1) is based on the FEM solution, and (iii) both GP_ and
SGP_RBM models use the same Py (and WN) conveniently. The
use of the same Wy results in saving a certain computational cost
for our SGP_RBM model as no extra RB space is necessary to create
for our SGP_RBM.

7. Numerical example and results

We now present a numerical example of a two-dimensional
cantilever beam with an oblique crack to examine the GP_RBM
and SGP_RBM in terms of (i) numerical convergency, (ii) output-
bound properties and (iii) computational efficiency.

7.1. Problem definition

Consider a two-dimensional linear elasticity problem of an iso-
tropic cantilever beam of physical domain € R%. The beam con-
taining an oblique crack in the middle plane is characterized by
the three parameters: the crack length denoted by L, the inclined
angle 0 and the position of the crack center b, as shown in Fig. 3.
We can thus define the “input” parameter p= (b,L,0) € 9 =
[1.5,2.5] x [0.3,0.7] x [15°,75°] C R>. We assume that the material
properties of the beam are of unit density, unity Young modulus
and Poisson ratio of v=0.25. The plane stress problem is consid-
ered. The boundary condition is then defined: the Dirichlet bound-
ary conditions on the boundary I'p, pressure or normal traction on
I't and zero traction on the surface of the crack I'c, the right edge
I'r and the bottom surface I'g. The output of our problem is a com-
pliance output which is the average displacement along the upper
boundary of the beam, I'r.

In this work, the FEM mesh consisting of linear triangular ele-
ments with a total degree of freedom of X =17,344 as shown in
Fig. 4 is first used for both GP_ and SGP_RBM. The GP_RBM and
SGP_RBM are coded to analyze this problem for real-time solution.
The numerical results are presented in the following section.

7.2. Numerical results
7.2.1. Convergence
To choose an optimal reduced-basis sample set Py, a regular

sampling grid of 17 x 17 x 17 for parameters u=(b,L,0) of
S¢ ¢ 2 is used in the greedy adaptive procedure. The desire accu-

A A A b

SOOI

Fig. 3. A cantilever beam with a crack.
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0 0.5 1 1.5 2 2.5 3 3.5 4

Fig. 4. Triangular mesh of finite element on the reference domain with the crack in
the middle.

racy is set to &g = 1074 The greedy algorithm found Np.x = 34. It
means that 34 sampling points in the parameter space are needed
to create the desired RBM model. The distribution of sample set Py
is shown in Fig. 5.

To examine the asymptotic error estimation, a parameter set
Stest With sample size of nes = 500 is randomly selected over the
parameter domain : the averaged output errors Ay, ., and
AN exactavg A€ €valuated over entire Seesr. The comparison of the
averaged output errors as a function of N is plotted in Fig. 6. The
comparison between the asymptotic output error 43 ,,(¢t) and exact
output error  Ay..(#) for the two parameters of
1=(2.3936,0.3681,43.3353°) and p=(1.6988,0.6707,33.8238°)
are also plotted in Figs. 7 and 8, respectively. These results indicate
that the asymptotic error estimation is reliable, and for N > 3, the
asymptotic error estimation is in good agreements with the exact
error. Therefore, it is very effective. The results also suggest a very
fast convergence rate of RBM for an N < X. To examine our asymp-
totic error more precisely, the maximum error difference of
| Ai\l,M(.umax) - Ai\l,exact(:umax) | and the effECtiVity n= A?\I.M(:umax)/
AN exact (Mmax) OVET the entire parameter set Sees; € D are also pro-
vided at the greedy step of Npax=34. We found that
| A3 11 (Hinax) — AN exace(Mmax) | 1S 3:1570 x 1077 and #=0.9957 ~ 1
which show that the asymptotic error estimation is very effective
and accurate.

7.2.2. Output bound condition and monotonic convergence property
The output bound condition which is one of the main concerns

of this work is investigated here. Three FEM meshes of dimension

Ryer = 30,760, R = Xp, = 17,344 for division D, and Np, = 4,392 for

10 T T T T T T

—+—EXxact output error i
102 L —#— Asymptotic output error |
10"

Qutput Error
)

0 5 10 15 20 25 30 35

Fig. 6. Comparison between the averaged asymptotic error and averaged exact
error.

division D, are used. The FEM is first used to obtain a reference out-
put using the very large dimension X, which is nearly twice as
large as Np, and seventh times as large as Xp, in the FEM approx-
imation space S. The output of the GP_RBM and SGP_RBM for do-
main divisions D; denoted as (Sy(t))p, and (Sn(u))p,, where i=1,2,
are evaluated.

For three randomly selected parameters from Ses C 2,
Htest—1 = (2.4883,0.5086,47.6885°), Utest—2 = (2.4943,0.5741,
20.8077°), and pest_3=(1.5589,0.6695,42.7393°), compliance
outputs of the GP_RBM, the reference FEM, and the SGP_RBM are
compared as shown in Table 2 and Fig. 9. The results show clearly
output-bound properties as well as monotonic convergence prop-
erty for the two meshes D, and D,, which confirms our theory.
For effective discussion on monotonic convergence property, Table
3 shows the bound gaps of Gp,(u), i=1,2, to assert that
Gp, (1) = Gp, (u) which confirms again our theory. These properties
are very important in practical engineering application. Moreover,

Fig. 5. Distribution of reduced-basis sample set Py obtained by adaptive sampling procedure using the greedy algorithm (Npax = 34).
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—+—EXxact output error ]
102 L —+—Asymptotic output error|]

Output Error

Fig. 7. Comparison between the asymptotic error and the exact output error for
1 =(2.3936,0.3681,43.3353°).

10 " " ‘
——EXxact output error 1
102 L —+—Asymptotic output error}]

Output Error
S

0 5 10 15 20 25 30 35

Fig. 8. Comparison between the asymptotic error and the exact output error for
1 =(1.6988,0.6707,33.8238°).

Table 3 confirms that a tighter bound can be obtainable using a fi-
ner mesh.

Note that the approach of producing the error bounds in the
present approach of using both GP_RBM and SGP_RBM is different
from the standard RBM approach. We do not evaluate the RBA-er-
ror anymore for the purpose of producing the error bounds for the
RBM outputs. The meaning of the output bounds and the bound
gaps are also different. The present RBM approach provides bounds
with respect to the exact outputs, while the standard RBM is with
respect to the fine FEM model.

7.2.3. Computational savings

The online computation cost for Sy(u) and Sy(u) is then com-
pared with that of the FEM output $(u). Based on the same discret-
ization D, of dimension Xy, = 17,344, the CPU time for evaluation
of Sy(u), Sn(u) and the FEM output evaluation of §(u) are listed in
Table 4. We found that the CPU time for the output evaluation
using the FEM is much longer than that of using both the proposed
GP_RBM and SGP_RBM.

Table 2
Compliance outputs by GP_RBM, reference FEM, and SGP_RBM for the coarse mesh D,
and for the fine mesh D,

pu=(bL,0) Compliance output: s(u)
Lower bound Reference FEM output Upper bound
. - N = 30,760 - -
(v, Gu(lp, ) (Sv()p, G,
Hrest—1 676.3851 681.0425 681.7525 683.4469 684.8074
Hrest—2 675.4433 680.7937 681.7268 684.0950 685.8932
Hrest—3 684.5895 688.8946 689.7194 691.5191 693.0566
700
e Reference output
* Lower bound(forD,)
6951 4 Lower bound(forD,) 1
% Upper bound(forDz) :
690 | % Upperbound(forD,) i
*
x
685 x * i
by x
* *
680 [ 1
*
675} * 1
670
p’test-1 " test-2 H test-3

Fig. 9. Illustration of the reference FEM output vs the GP_RBM, and SGP_RBM
outputs for three selected parameter points (D,: fine mesh, D;: coarse mesh).

Table 3
Bound gaps for the two different background meshes, D; and D,

n=(b,L06) Bound difference: Gp, = (Sn(1))p, — Sn(W))p,, i=1,2

D, (fine mesh)

D, (coarse mesh)

Htest—1 8.4223 2.4044
Htest—2 10.4499 3.3013
Htest—3 8.4671 2.6245
Table 4
Comparison of RBM online computational time and FEM computational time
N Online evaluation time for outputs, s(u) (s)
GP_RBM SGP_RBM Total online time
20 0.56 x 1073 0.54 x 1073 1.1 x 1073
30 0.64 x 1073 0.64 x 1072 1.28 x 1073
34 0.67 x 107> 0.66 x 103 133 x 1073
FEM evaluation time for S(u)(X = 17,344) (s) 0.9289 ~ 1 (s)

To precisely quantify the saving, we define the CPU time-saving
factor o as

t

- (73)
tcp_rem + Lscp_rBM

where tggy is CPU time for output evaluation using the FEM, tcp rem

and tsgp grgm are CPU time for “online” output evaluations using

GP_RBM and SGP_RBM. Table 5 shows the CPU time-saving factor



G.R. Liu et al./ Comput. Methods Appl. Mech. Engrg. 198 (2008) 269-279 279

Table 5
Time-saving by using RBM including GP_RBM and SGP_RBM compared to FEM for
N=34

Computation time a

tcp_rem + tscp_rem (S)

133 x 1073

tscp_rem (S)

0.66 x 1073

tcp_rem ()

0.67 x 1073

698.42 ~ 700

trem = 0.9289 ~ 1 (s)

for the cantilever beam problem. The computational saving factor o
is nearly as large as 700.

8. Conclusion

A new fast computational method called smoothed Galerkin
projection reduced-basis method (SGP_RBM) is developed for
real-time computation of upper bounds of the outputs of linear
elastic solid mechanics problems in this work. The smoothed bilin-
ear form is employed in the well-known reduced-basis method to
establish the theoretical framework of the SGP_RBM. The impor-
tant properties of the proposed method have been proven theoret-
ically and investigated numerically on a sample problem. Both the
theoretical analysis and numerical results have demonstrated that
the proposed SGP_RBM has the following features:

(i) The method has the same fast convergence rate of the stan-
dard reduced-basis method.

(ii) We presented for the first time a numerical method to
obtain, in real-time, both the exact upper and lower bounds:
the SGP_RBM gives an upper bound and the GP_RBM gives a
lower bound.

(iii) The conventional expensive reduced-basis error estimations
are not required for the upper bound output.

(iv) A less precise but more efficient asymptotic error estimation
can be employed only for the construction of the reduced-
basis sample set.

(v) In the present approach, we do not require “very fine” mesh
for building the SGP_RBM and GP_RBM models. The mesh
density can be determined by the desired accuracy for the
outputs. This is because our output bounds are always with
respect to the exact outputs regardless of the mesh density
of the model. This means that even the offline computational
cost can be saved significantly.

(vi) The present approach is very efficient computationally. For
the example problem, the present RBM approach is 700
times faster than the finite element approach. Even better
computational efficiency can be expected for large-scale
systems.
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